Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232931

RESUMO

TRAIL, a member of TNF superfamily, is a potent inducer of neuronal death. Neurotoxic effects of TRAIL appear mediated by its death receptor TRAIL-R2/DR5. To assess the role of TRAIL/TRAIL-R2 pathway in AD-related neurodegeneration, we studied the impact of the treatment with amyloid-ß (Aß) upon cell viability and inflammation in TRAIL-R-deficient mice (TRAIL-R-/-). Here, we demonstrate that the lack of TRAIL-R2 protects from death cultured TRAIL-R-/- mouse embryonic hippocampal cells after treatment with either Aß1-42 or TRAIL. Consistently, stereotaxic injection of Aß1-42 resulted in blunted caspase activation, as well as in reduction of JNK phosphorylation and increased AKT phosphorylation in TRAIL-R-/- mice. Moreover, the lack of TRAIL-R2 was associated with blunted constitutive p53 expression in mice that have undergone Aß1-42 treatment, as well as in decrease of phosphorylated forms of tau and GSK3ß proteins. Likewise, TRAIL-R2 appears essential to both TRAIL and Aß-mediated neurotoxicity and inflammation. Indeed, hippocampi of TRAIL-R-/- mice challenged with Aß1-42, showed a slight expression of microglial (Iba-1) and astrocytic (GFAP) markers along with attenuated levels of IL-1ß, TNF-α, NOS2 and COX2. In conclusion, the bulk of these results demonstrate that the constitutive lack of TRAIL-R2 is associated with a substantial reduction of noxious effects of Aß1-42, providing further evidence on the prominent role played by TRAIL in course of Aß-related neurodegeneration and confirming that the TRAIL system represents a potential target for innovative AD therapy.


Assuntos
Síndromes Neurotóxicas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa , Peptídeos beta-Amiloides/metabolismo , Animais , Caspases/metabolismo , Ciclo-Oxigenase 2/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Inflamação , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53
3.
Biomolecules ; 10(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948090

RESUMO

Extracellular vesicles (EVs) are naturally occurring membranous structures secreted by normal and diseased cells, and carrying a wide range of bioactive molecules. In the central nervous system (CNS), EVs are important in both homeostasis and pathology. Through receptor-ligand interactions, direct fusion, or endocytosis, EVs interact with their target cells. Accumulating evidence indicates that EVs play crucial roles in the pathogenesis of many neurodegenerative disorders (NDs), including Parkinson's disease (PD). PD is the second most common ND, characterized by the progressive loss of dopaminergic (DAergic) neurons within the Substantia Nigra pars compacta (SNpc). In PD, EVs are secreted by both neurons and glial cells, with either beneficial or detrimental effects, via a complex program of cell-to-cell communication. The functions of EVs in PD range from their etiopathogenetic relevance to their use as diagnostic tools and innovative carriers of therapeutics. Because they can cross the blood-brain barrier, EVs can be engineered to deliver bioactive molecules (e.g., small interfering RNAs, catalase) within the CNS. This review summarizes the latest findings regarding the role played by EVs in PD etiology, diagnosis, prognosis, and therapy, with a particular focus on their use as novel PD nanotherapeutics.


Assuntos
Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Nanopartículas/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/patologia , Comunicação Celular/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Biológicos , Nanopartículas/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
4.
J Clin Med ; 9(6)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575923

RESUMO

Glial cells are fundamental players in the central nervous system (CNS) development and homeostasis, both in health and disease states. In Parkinson's disease (PD), a dysfunctional glia-neuron crosstalk represents a common final pathway contributing to the chronic and progressive death of dopaminergic (DAergic) neurons of the substantia nigra pars compacta (SNpc). Notably, glial cells communicating with each other by an array of molecules, can acquire a "beneficial" or "destructive" phenotype, thereby enhancing neuronal death/vulnerability and/or exerting critical neuroprotective and neuroreparative functions, with mechanisms that are actively investigated. An important way of delivering messenger molecules within this glia-neuron cross-talk consists in the secretion of extracellular vesicles (EVs). EVs are nano-sized membranous particles able to convey a wide range of molecular cargoes in a controlled way, depending on the specific donor cell and the microenvironmental milieu. Given the dual role of glia in PD, glia-derived EVs may deliver molecules carrying various messages for the vulnerable/dysfunctional DAergic neurons. Here, we summarize the state-of-the-art of glial-neuron interactions and glia-derived EVs in PD. Also, EVs have the ability to cross the blood brain barrier (BBB), thus acting both within the CNS and outside, in the periphery. In these regards, this review discloses the emerging applications of EVs, with a special focus on glia-derived EVs as potential carriers of new biomarkers and nanotherapeutics for PD.

5.
Front Aging Neurosci ; 12: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226376

RESUMO

Astrocyte (As) bidirectional dialog with neurons plays a fundamental role in major homeostatic brain functions, particularly providing metabolic support and antioxidant self-defense against reactive oxygen (ROS) and nitrogen species (RNS) via the activation of NF-E2-related factor 2 (Nrf2), a master regulator of oxidative stress. Disruption of As-neuron crosstalk is chiefly involved in neuronal degeneration observed in Parkinson's disease (PD), the most common movement disorder characterized by the selective degeneration of dopaminergic (DAergic) cell bodies of the substantia nigra (SN) pars compacta (SNpc). Ventral midbrain (VM)-As are recognized to exert an important role in DAergic neuroprotection via the expression of a variety of factors, including wingless-related MMTV integration site 1 (Wnt1), a principal player in DAergic neurogenesis. However, whether As, by themselves, might fulfill the role of chief players in DAergic neurorestoration of aged PD mice is presently unresolved. Here, we used primary postnatal mouse VM-As as a graft source for unilateral transplantation above the SN of aged 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice after the onset of motor symptoms. Spatio-temporal analyses documented that the engrafted cells promoted: (i) a time-dependent nigrostriatal rescue along with increased high-affinity synaptosomal DA uptake and counteraction of motor deficit, as compared to mock-grafted counterparts; and (ii) a restoration of the impaired microenvironment via upregulation of As antioxidant self-defense through the activation of Nrf2/Wnt/ß-catenin signaling, suggesting that grafting As has the potential to switch the SN neurorescue-unfriendly environment to a beneficial antioxidant/anti-inflammatory prosurvival milieu. These findings highlight As-derived factors/mechanisms as the crucial key for successful therapeutic outcomes in PD.

6.
Eur J Pharm Biopharm ; 133: 309-320, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30399400

RESUMO

The brain as a target for drug delivery is a challenge in pharmaceutical research. Among the several proposed strategies, the intranasal route represents a good strategy to deliver drugs to the brain. The goal of this study was to investigate the potential use of oxcarbazepine (OXC) to enhance brain targeting efficiency after intranasal (IN) administration. As well as attempting to use as low a dose as possible to obtain therapeutic effect. Our results showed that, after IN administrations, the dose of OXC that was effective in controlling epileptic seizures was 0.5 mg/kg (1 dose, every 20 min for 1 h) in rodents, confirmed by Cerebral Spinal Fluid (CSF) bioavailability. With the aim of reducing the number of administrations, sustaining drug release and increasing brain targeting, OXC was loaded into poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs). The selected nanoformulation for in vivo studies was obtained re-suspending the freeze-dried and cryo-protected OXC loaded PLGA NPs. The translocation of 1-1'-Dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine Iodide loaded PLGA NPs, from nose to the brain, was confirmed by Fluorescence Molecular Tomography, which also evidenced an accumulation of NPs in the brain after repeated IN administrations. IN administrations of OXC loaded PLGA NPs reduced the number of administrations to 1 over 24 h compared to the free drug thus controlling seizures in rats. Immunohistochemical evaluations (anti-neurofilament, anti-beta tubulin, and anti-caspase3) demonstrated a neuroprotective effect of OXC PLGA NPs after 16 days of treatment. These encouraging results confirmed the possibility of developing a novel non-invasive nose to brain delivery system of OXC for the treatment of epilepsy.


Assuntos
Nanopartículas/química , Oxcarbazepina/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Convulsões/tratamento farmacológico , Administração Intranasal/métodos , Animais , Encéfalo/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Oxcarbazepina/química , Ratos , Ratos Wistar , Roedores
7.
Stem Cells ; 32(8): 2147-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24648001

RESUMO

Wnt/ß-catenin signaling is required for specification and neurogenesis of midbrain dopaminergic (mDA) neurons, the pivotal neuronal population that degenerates in Parkinson's disease (PD), and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Wnt/ß-catenin signaling plays a vital role in adult neurogenesis but whether it might engage DA neurogenesis/neurorepair in the affected PD brain is yet unresolved. Recently, the adult midbrain aqueduct periventricular regions (Aq-PVRs) were shown to harbor multipotent clonogenic neural stem/progenitor cells (mNPCs) with DA potential in vitro, but restrictive mechanisms in vivo are believed to limit their DA regenerative capacity. Using in vitro mNPC culture systems we herein demonstrate that aging is one most critical factor restricting mNPC neurogenic potential via dysregulation of Wnt/ß-catenin signaling. Coculture paradigms between young/aged (Y/A) mNPCs and Y/A astrocytes identified glial age and a decline of glial-derived factors including Wnts as key determinants of impaired neurogenic potential, whereas Wnt activation regimens efficiently reversed the diminished proliferative, neuronal, and DA differentiation potential of A-mNPCs. Next, in vivo studies in wild (Wt) and transgenic ß-catenin reporter mice uncovered Wnt/ß-catenin signaling activation and remarkable astrocyte remodeling of Aq-PVR in response to MPTP-induced DA neuron death. Spatio-temporal analyses unveiled ß-catenin signaling in predopaminergic (Nurr1(+)/TH(-)) and imperiled or rescuing DAT(+) neurons during MPTP-induced DA neuron injury and self-repair. Aging inhibited Wnt signaling, whereas ß-catenin activation in situ with a specific GSK-3ß antagonist promoted a significant degree of DA neurorestoration associated with reversal of motor deficit, with implications for neurorestorative approaches in PD.


Assuntos
Envelhecimento/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Doença de Parkinson/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Western Blotting , Técnicas de Cocultura , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Imuno-Histoquímica , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/metabolismo , Doença de Parkinson/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Mol Cell Biol ; 6(1): 13-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24431301

RESUMO

During the past three decades, the Wingless-type MMTV integration site (Wnt) signaling cascade has emerged as an essential system regulating multiple processes in developing and adult brain. Accumulating evidence points to a dysregulation of Wnt signaling in major neurodegenerative pathologies including Parkinson's disease (PD), a common neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic (mDA) neurons and deregulated activation of astrocytes and microglia. This review highlights the emerging link between Wnt signaling and key inflammatory pathways during mDA neuron damage/repair in PD progression. In particular, we summarize recent evidence documenting that aging and neurotoxicant exposure strongly antagonize Wnt/ß-catenin signaling in mDA neurons and subventricular zone (SVZ) neuroprogenitors via astrocyte-microglial interactions. Dysregulation of the crosstalk between Wnt/ß-catenin signaling and anti-oxidant/anti-inflammatory pathways delineate novel mechanisms driving the decline of SVZ plasticity with age and the limited nigrostriatal dopaminergic self-repair in PD. These findings hold a promise in developing therapies that target Wnt/ß-catenin signaling to enhance endogenous restoration and neuronal outcome in age-dependent diseases, such as PD.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Regeneração Nervosa/genética , Neuroimunomodulação/genética , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Sobrevivência Celular , Microambiente Celular , Modelos Biológicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Doença de Parkinson/genética
9.
Eur J Neurosci ; 37(10): 1550-63, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23461676

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neuronal cell bodies in the substantia nigra pars compacta and gliosis. The cause and mechanisms underlying the demise of nigrostriatal DAergic neurons are ill-defined, but interactions between genes and environmental factors are recognized to play a critical role in modulating the vulnerability to PD. Current evidence points to reactive glia as a pivotal factor in PD pathophysiology, playing both protective and destructive roles. Here, the contribution of reactive astrocytes and their ability to modulate DAergic neurodegeneration, neuroprotection and neurorepair in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD will be discussed in the light of novel emerging evidence implicating wingless-type mouse mammary tumor virus integration site (Wnt)/ß-catenin signaling as a strong candidate in MPTP-induced nigrostriatal DAergic plasticity. In this work, we highlight an intrinsic Wnt1/frizzled-1/ß-catenin tone that critically contributes to the survival and protection of adult midbrain DAergic neurons, with potential implications for drug design or drug action in PD. The dynamic interplay between astrocyte-derived factors and neurogenic signals in MPTP-induced nigrostriatal DAergic neurotoxicity and repair will be summarized, together with recent findings showing a critical role of glia-neural stem/progenitor cell (NPC) interactions aimed at overcoming neurodegeneration and inducing neurorestoration. Understanding the intrinsic plasticity of nigrostriatal DAergic neurons and deciphering the signals facilitating the crosstalk between astrocytes, microglia, DAergic neurons and NPCs may have major implications for the role of stem cell technology in PD, and for identifying potential therapeutic targets to induce endogenous neurorepair.


Assuntos
Astrócitos/metabolismo , Intoxicação por MPTP/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt , Animais , Intoxicação por MPTP/patologia , Camundongos
10.
Neurosci Lett ; 492(1): 33-8, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21276833

RESUMO

SnCl(2) has been reported to increase the expression of heme-oxygenase 1 (HO-1), a major antioxidant enzyme, and to decrease ischemic injury, in non-nervous tissues. This study examined the neuroprotective effect of SnCl(2) in the hippocampus of rats submitted to cerebral ischemia. SnCl(2) was administered 18 h before bilateral carotids obstruction. Changes in HO-1 expression and activity, heme content, inducible nitric oxide synthase (iNOS) expression and parvalbumin positive interneuron survival were studied. Thereafter both behavior and memory recovery were tested. The administration of SnCl(2) increased the expression of HO-1 protein and HO activity in the hippocampus and concomitantly decreased heme content at both mitochondrial and nuclear level. Furthermore, ischemized animals showed a strong increase in iNOS expression in the hippocampus, where a loss of parvalbumin positive interneurons also occurred. Pre-treatment with SnCl(2), decreased both iNOS expression in ischemized rats and increased cell survival. The beneficial effects of SnCl(2) were prevented by concomitant treatment with SnMP, a strong inhibitor of HO activity. SnCl(2) also caused an improvement in short term memory recovery. Our results showed that following SnCl(2) administration, HO-1 is strongly induced in the hippocampus and modulate iNOS expression, resulting in a strong neuroprotective effect.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Heme/metabolismo , Interneurônios/patologia , Degeneração Neural/prevenção & controle , Parvalbuminas/metabolismo , Compostos de Estanho/uso terapêutico , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Isquemia Encefálica/patologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Interneurônios/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Metaloporfirinas/farmacologia , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Ratos Wistar , Compostos de Estanho/antagonistas & inibidores
11.
Brain Res Brain Res Rev ; 49(2): 280-94, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16111556

RESUMO

This study analyzed the projections of the basilar pontine nuclei (BPN) and of the nucleus reticularis tegmenti pontis (NRTP) to the two sides of the cerebellum in the rat. It showed that the two sides of the cerebellar cortex were innervated by different percentages of BPN (about 82% of the cells project to the contralateral cortex and 18% to the ipsilateral) and NRTP cells (some 60% project to the contralateral cortex and 40% to the ipsilateral). In comparison to projections traced to the cortex, only a few fibers were traced to the nuclei of the same animals. Most of the projections of the BPN to the cerebellar nuclei were traced to the lateralis and posterior interpositus nucleus of the contralateral side (95%), while a few were traced to homologous nuclei of the ipsilateral side (5%). Thus, the BPN principally control the activity of the contralateral cerebellum, with a much less important control over the activity of the ipsilateral cerebellum. Vice versa, the NRTP, which project to the lateralis, interpositus, and medialis nuclei of the two sides, with percentages (64% contra- and 36% ipsilateral) similar to those reported for the projections to the cortex, is more concerned in the bilateral control of the cerebellum, although with a moderate contralateral prevalence. The fact that projections of the BPN were principally traced to the contralateral nuclei, from which the efferent projection fibers from the cerebellum originate, suggests that the BPN are principally involved in the motor control of the contralateral body. Conversely, the bilateral projections of the NRTP to the cerebellar nuclei suggest that the NRTP is mainly involved in bilateral motor activities. The comparison of the projections to the cortex and nuclei of the cerebellum of single animals supports the co-existence of coupled (i.e., projections to the cortex and the corresponding nuclei) and uncoupled (i.e., projections to the cortex but not to the nuclei) projection patterns, from both the BPN and the NRTP. These features of the pontocerebellar projections open new vistas on the functional architecture of this pathway.


Assuntos
Cerebelo/anatomia & histologia , Lateralidade Funcional/fisiologia , Vias Neurais/anatomia & histologia , Ponte/anatomia & histologia , Animais , Mapeamento Encefálico , Ratos
12.
Prog Brain Res ; 148: 259-82, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15661196

RESUMO

Previous studies often considered the basilar pontine nuclei (BPN) and the nucleus reticularis tegmenti pontis (NRTP) as relays of a single cerebro-(ponto)-cerebellar pathway. Conversely, the different cortical afferences to the BPN and the NRTP, as well as the anatomical and functional features of the cerebellopetal projections from these pontine nuclei, support the different, and for some aspect, complementary arrangement of the cerebrocerebellar pathways relayed by the BPN or NRTP. Both the BPN and the NRTP are innervated from the cerebral cortex, but with regional prevalence. The NRTP is principally innervated from motor or sensori-motor areas while the BPN are principally innervated from sensory, mainly teloceptive, and associative area. Projections from sensory-motor areas were also traced to the BPN. The BPN and NRTP project to all parts of the cerebellar cortex with a similar pattern. In fact, from single areas of them projections were traced to set of sagittal stripes of the cerebellar cortex. In variance to such analogies, the projections to the cerebellar nuclei differed between those traced from the NRTP and from BPN. In fact, BPN and NRTP have private terminal areas in the cerebellar nuclei with relatively little overlaps. The BPN innervated the lateroventral part of the nucleus lateralis and the caudoventral aspect of the nucleus interpositalis posterioris. The NRTP principally innervated the mediodorsal part of the nucleus lateralis, the nucleus interpositalis anterioris, the nucleus medialis. Since the single cerebellar nuclei have their specific targets in the extracerebellar brain areas, it follows that the BPN and the NRTP, passing through their cerebellar nuclei relays, are devoted to control different brain areas and thus likely to play different functional roles. From single pontine regions (of both BPN and NRTP) projections were traced to the cerebellar cortex and to the cerebellar nuclei. In some cases these projections reached areas which are likely anatomically connected (by Purkinje axons). This pattern of the pontine projections was termed as coupled projection. In some other cases, the projections reached areas of the cerebellar cortex but not the nuclear regions innervated by them. We termed this as uncoupled projection. The existence of both coupled and uncoupled projections, open new vistas on the functional architecture of the pontocerebellar pathway. More in detail, this study showed the different quantitative and topographic distribution of the coupled and uncoupled projections visualized in the cerebellar projections from BPN and NRTP. All these evidences strongly support the anatomical and the functional differences that characterise the cerebrocerebellar pathways relayed by the BPN and the NRTP.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Ponte/citologia , Ponte/fisiologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Vias Neurais , Ratos
13.
J Comp Neurol ; 452(2): 115-27, 2002 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-12271486

RESUMO

This study showed the precise projection pattern of the basilar pontine nuclei (BPN) and the nucleus reticularis tegmenti pontis (NRTP) to the cerebellar nuclei (CN), as well as the different anatomic features of BPN and NRTP projections. The staining of BPN or NRTP with biotinylated dextran labeled projection fibers to complementary topographic areas in the CN. In fact, BPN principally project to a rostrocaudally oriented column of the nucleus lateralis (NL), which at the midcentral level shifts to the lateroventral part of the nucleus, as well as to the caudolateral part of the nucleus interpositus posterioris. The NRTP projects to a rostrocaudal column of the NL, which at the midcentral level shifts medially, as well as to the nucleus interpositalis and to the caudal part of the nucleus medialis. BPN axons in the CN usually branch into short collaterals of simple morphology that involve small terminal areas, whereas NRTP axons branch into longer collaterals of complex morphology involving terminal areas of different sizes. Each site of injection is at the origin of a set of terminal areas in the CN. The set of projections from different BPN or NRTP areas were partially, but never completely, overlapping. Thus, the set of terminal areas in the CN was specific for each area of both BPN and NRTP. Injection of tetramethyl-rhodamine-dextran-amine into the CN stained cell bodies of BPN and NRTP with different repartition on the two sides. The study showed that CN are innervated by the contralateral BPN and not very much by the ipsilateral BPN, whereas they are innervated by NRTP bilaterally, even if with a contralateral prevalence. In conclusion, this study supports the hypothesis that both BPN and NRTP are concerned in the central program for skilled movements, even if they are probably involved in different functional roles.


Assuntos
Núcleos Cerebelares/ultraestrutura , Vias Neurais/ultraestrutura , Ponte/ultraestrutura , Animais , Processamento de Imagem Assistida por Computador , Fibras Nervosas/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...